LECTURE NOTE

QIANDU HE

CONTENTS

1. Preliminaries draft References

1. Preliminaries draft

Definition 1.1. A computable metric space is a triple (X, ρ, S) , where

- (i) (X, ρ) is a separable metric space;
- (ii) $S = \{s_n : n \in \mathbb{N}\}$ is a countable dense subset of X; and
- (iii) there exists an algorithm which, on input $i, j, m \in \mathbb{N}$, outputs $y_{i,j,m} \in \mathbb{Q}$ satisfying $|y_{i,j,m} \rho(s_i, s_j)| < 2^{-m}$.

The points in S are said to be *ideal*. Due to the existence of computable bijection between \mathbb{N}^3 and \mathbb{N} , there exists an effective enumeration $\{B_l\}_{l\in\mathbb{N}}$ of the set $\{B(s_i, j/k) : i, j, k \in \mathbb{N}\}$ of balls with rational radii centered at points in S. Specifically, there exists an algorithm that, given an input $l \in \mathbb{N}$, outputs the lower index of the ideal center and the rational radius of the ball B_l . These balls are called the *ideal balls* in (X, ρ, S) . We fix such an effective enumeration of ideal balls and call it the effective enumeration of ideal balls in (X, ρ, S) .

Definition 1.2. In a computable metric space (X, ρ, S) , an open set $U \subseteq X$ is called *lower semi-computable* if there is a computable function $f \colon \mathbb{N} \to \mathbb{N}$ such that $U = \bigcup_{n \in \mathbb{N}} B_{f(n)}$. Moreover, a sequence $\{U_i\}_{i \in \mathbb{N}}$ of lower semi-computable open sets is called *a sequence of uniformly lower semi-computable open sets* if there is a computable function $f \colon \mathbb{N}^2 \to \mathbb{N}$ such that $U_i = \bigcup_{n \in \mathbb{N}} B_{f(i,n)}$ for each $i \in \mathbb{N}$.

Definition 1.3. Let (X, ρ, S) and (X', ρ', S') be computable metric spaces with $S = \{s_i\}_{i \in \mathbb{N}}$ and $S' = \{s'_i\}_{i \in \mathbb{N}}$, and let C be a subset of X. A function $f: X \to X'$ is said to be *computable* on C if there exists an algorithm that for each $x \in X$ and each $n \in \mathbb{N}$, on input $n \in \mathbb{N}$ and an oracle φ for $x \in C$, outputs $m \in \mathbb{N}$ satisfying $\rho'(s'_m, f(x)) < 2^{-n}$. Moreover, a sequence $\{f_i\}_{i \in \mathbb{N}}$ of functions $f_i: X \to X'$ is called a sequence of uniformly computable functions on C if there exists an algorithm that for each $x \in X$, each $i \in \mathbb{N}$, and each $n \in \mathbb{N}$, on input $i, n \in \mathbb{N}$, and an oracle φ for $x \in C$, outputs $m \in \mathbb{N}$ satisfying $\rho'(s'_m, f_i(x)) < 2^{-n}$. As a convention, we say that f is computable if f is computable on X.

Proposition 1.4. Let (X, ρ, S) and (X', ρ', S') be two computable metric spaces, C be a subset of X, and $\{B'_i\}_{i\in\mathbb{N}}$ be the effective enumeration of ideal balls in (X', ρ', S') . Assume that $\{f_i\}_{i\in\mathbb{N}}$ is a sequence of functions $f_i: X \to X'$. Then $\{f_i\}_{i\in\mathbb{N}}$ is a sequence of uniformly computable functions on C if and only if there exists a sequence $\{U_{i,j}\}_{i,j\in\mathbb{N}}$ of uniformly lower semi-computable open

Date: April 2, 2025.

Key words and phrases. computability, computable analysis.

QIANDU HE

sets in the computable metric space (X, ρ, S) satisfying that $f_j^{-1}(B'_i) \cap C = U_{i,j} \cap C$ for each pair of $i, j \in \mathbb{N}$.

Proof. Write $S = \{s_i\}_{i \in \mathbb{N}}$ and $S' = \{s'_i\}_{i \in \mathbb{N}}$. Now we assume that $\{f_i\}_{i \in \mathbb{N}}$ is a sequence of uniformly computable functions on C and show that there exists a sequence $\{U_{i,j}\}_{i,j \in \mathbb{N}}$ of uniformly lower semi-computable open sets in the computable metric space (X, ρ, S) satisfying $f_j^{-1}(B'_i) \cap C = U_{i,j} \cap C$ for each pair of $i, j \in \mathbb{N}$. For each $q \in \mathbb{N}$, we say that a sequence $\{p_i\}_{i=1}^q$ of integers is admissible in the computable metric space (X, ρ, S) if $\rho(s_{p_{i+1}}, s_{p_i}) < 2^{-i-1}$ for each $i \in \mathbb{N} \cap [1, q-1]$. By Definition 1.1 (iii), we can check whether a given sequence of finitely many integers is admissible. Hence, by enumerating all the sequences of finitely many integers, it is not difficult to obtain an effective enumeration $\{P_i\}_{i \in \mathbb{N}}$ of all possible admissible sequences in (X, ρ, S) . Moreover, for each admissible sequence $P = \{p_i\}_{i=1}^q$, we can define a corresponding function $\varphi_P \colon \mathbb{N} \to \mathbb{N}$ as follows:

$$\varphi_P(i) \coloneqq \begin{cases} p_i & \text{if } 1 \leqslant i \leqslant q; \\ p_q & \text{if } i \geqslant q+1 \end{cases} \quad \text{for each } i \in \mathbb{N}$$

is an oracle for the point $s_{p_q} \in X$.

Since $\{f_i\}_{i\in\mathbb{N}}$ is a sequence of uniformly computable functions on C, there exists an algorithm $M(\cdot, \cdot, \cdot)$ that satisfies that for each $x \in C$, each $n \in \mathbb{N}$, each $i \in \mathbb{N}$, and each oracle φ for $x, M(i, n, \varphi)$ outputs $m \in \mathbb{N}$ satisfying that $\rho'(s'_m, f_i(x)) < 2^{-n}$. We enumerate $\mathbb{N} \times \mathbb{N}$ by $\{(a_u, n_u)\}_{u\in\mathbb{N}}$ effectively. Now we design an algorithm $M'(\cdot, \cdot)$ which, for each pair of $i, j \in \mathbb{N}$, on input $i, j \in \mathbb{N}$, outputs a sequence $\{c_{i,j,k}\}_{k\in\mathbb{N}}$ of integers and a sequence $\{r_{i,j,k}\}_{k\in\mathbb{N}}$ of rational numbers satisfying that $f_j^{-1}(B'_i) \cap C = \bigcup_{k\in\mathbb{N}} (B_\rho(s_{c_{i,j,k}}, r_{i,j,k}) \cap C)$ for each $i, j \in \mathbb{N}$ as follows.

Begin

- (i) Read in the integers i and j.
- (ii) Set u and k both to be 1, and $\text{flag}_i = 0$ for each $i \in \mathbb{N}$.
- (iii) While $u \ge 1$ do
 - (1) Run the algorithm $M(j, n_u, \varphi_{P_{a_u}})$.
 - (2) Set v to be 1.
 - (3) While $1 \leq v \leq u$ do
 - (A) If
 - (a) flag_v equals to 0,
 - (b) the algorithm $M(j, n_v, \varphi_{P_{a_v}})$ halts and outputs $m_v \in \mathbb{N}$ satisfying that

$$B_{\rho'}(s'_{m_v}, 2^{-n_v}) \subseteq B'_i$$

(the algorithm $M(j, n_v, \varphi_{P_{av}})$ terminates after finitely many steps, and hence the oracle $\varphi_{P_{av}}$ is only quired up to some finite precision 2^{-w_v}),

 then

- (a') the algorithm M'(i,j) outputs $c_{i,j,k} \coloneqq \varphi_{P_{av}}(w_v)$ and $r_{i,j,k} \coloneqq 2^{-w_v}$,
- (b') set flag_v to be 1 and k to be k + 1.
- (B) Set v to be v + 1.

(4) Set u to be u + 1.

End

Now we fix an pair of $i, j \in \mathbb{N}$, and verify that $f_j^{-1}(B'_i) \cap C = \bigcup_{k \in \mathbb{N}} (B_\rho(s_{c_{i,j,k}}, r_{i,j,k}) \cap C).$

3

First, we fix an integer k and show that $B_{\rho}(s_{c_{i,j,k}}, r_{i,j,k}) \cap C \subseteq f_j^{-1}(B'_i)$. By Step (iii) (3) (A) of the algorithm M'(i, j), we obtain that $c_{i,j,k} = \varphi_{P_{a_v}}(w_v)$ and $r_{i,j,k} = 2^{-w_v}$ for some $v \in \mathbb{N}$ with $B_{\rho'}(s'_{m_v}, 2^{-n_v}) \subseteq B'_i$. Here m_v is the output of the algorithm $M(j, n_v, \varphi_{P_{a_v}})$. Note that $\mathcal{S} = \{s_i\}_{i\in\mathbb{N}}$ is dense in X. It is not hard to see that, for each $x \in B_{\rho}(s_{c_{i,j,k}}, r_{i,j,k}) \cap C$, there is a valid oracle $\tilde{\varphi}_x$ that agrees with $\varphi_{P_{a_v}}$ up to precision 2^{-w_v} . Thus for each $x \in B_{\rho}(s_{c_{i,j,k}}, r_{i,j,k}) \cap C$, there is a valid oracle $\tilde{\varphi}_x$ that agrees much more than m_v and hence, we must have $f_j(x) \in B_{\rho'}(s'_{m_v}, 2^{-n_v}) \subseteq B'_i$. Then we have $f_j(B_{\rho}(s_{c_{i,j,k}}, r_{i,j,k}) \cap C) \subseteq B'_i$. Therefore, we obtain that $\bigcup_{k\in\mathbb{N}} (B_{\rho}(s_{c_{i,j,k}}, r_{i,j,k}) \cap C) \subseteq f_i^{-1}(B'_i) \cap C$.

Next, we establish that $\bigcup_{k\in\mathbb{N}} (B_{\rho}(s_{c_{i,j,k}}, r_{i,j,k}) \cap C) \supseteq f_j^{-1}(B'_i) \cap C$. Now we fix an point $x \in f_j^{-1}(B'_i) \cap C$, and show that $x \in B_{\rho}(s_{c_{i,j,k}}, r_{i,j,k})$ for some $k \in \mathbb{N}$. Indeed, since $f_j(x) \in B'_i$, there exists $n(x) \in \mathbb{N}$ satisfying that $B_{\rho'}(f_j(x), 2^{-n(x)+1}) \subseteq B'_i$. Note that \mathcal{S} is dense in X. It is not hard to see that, for $x \in C$, there is a valid oracle $\overline{\varphi}_x$ that satisfies that $\{\overline{\varphi}_x(v)\}_{v=1}^q$ is an admissible sequence for each $q \in \mathbb{N}$. Note that $x \in C$. Then the algorithm $M(j, n(x), \overline{\varphi}_x)$ will halt eventually. Assume that the output of the algorithm $M(j, n(x), \overline{\varphi}_x)$ is m(x). Then $\rho'(s'_{m(x)}, f_j(x)) < 2^{-n(x)}$. Hence, $B_{\rho'}(s'_{m(x)}, 2^{-n(x)}) \subseteq B_{\rho'}(f_j(x), 2^{-n(x)+1}) \subseteq B'_i$. Assume that the oracle $\overline{\varphi}_x$ is only quired up to the precision $2^{-w(x)}$ by the algorithm $M(j, n(x), \overline{\varphi}_x)$. Denote the sequence $\{\overline{\varphi}_x(v)\}_{v=1}^{w(x)}$ by Q(x). Then Q(x) is an admissible sequence and the oracle $\varphi_{Q(x)}$ agrees with $\overline{\varphi}_x$ up to precision $2^{-w(x)}$. Since $B_{\rho'}(s'_{m(x)}, 2^{-n(x)})$ outputs the same answer $m(x) \in \mathbb{N}$ as $M(j, n(x), \overline{\varphi}_x)$. Since Q(x) is an admissible sequence, we will run the algorithm $M(j, n(x), \varphi_{Q(x)})$ in Step (iii) (1) of the algorithm M'(i,j). Since $B_{\rho'}(s'_{m(x)}, 2^{-n(x)}) \subseteq B'_i$, in Step (iii) (3) (A) of the algorithm M'(i,j), M'(i,j) will output $c_{i,j,k} = \varphi_{Q(x)}(w(x)) = \overline{\varphi}_x(w(x))$ and $r_{i,j,k} = 2^{-w(x)}$ for some $k \in \mathbb{N}$. Note that $\overline{\varphi}_x$ is an oracle for x. Then we have $x \in B_{\rho}(s_{\overline{\varphi}_x(w(x)}, 2^{-w(x)}) = B_{\rho}(s_{c_{i,j,k}}, r_{i,j,k})$.

Hence, $f_j^{-1}(B'_i) \cap C = (\bigcup_{k \in \mathbb{N}} B_\rho(s_{c_{i,j,k}}, r_{i,j,k})) \cap C$ for each pair of $i, j \in \mathbb{N}$. Note that by the existence of the algorithm $M'(\cdot, \cdot)$, we have $\{B_\rho(s_{c_{i,j,k}}, r_{i,j,k}) : i, j, k \in \mathbb{N}\}$ is a sequence of uniformly lower semi-computable open sets in the computable metric space (X, ρ, S) . From Definition 1.2, by constructing a computable bijection between \mathbb{N}^3 and \mathbb{N}^2 , it is not hard to derive that $\{\bigcup_{k\in\mathbb{N}} B_\rho(s_{c_{i,j,k}}, r_{i,j,k}) : i, j \in \mathbb{N}\}$ is a sequence of uniformly lower semi-computable open sets in the computable metric space (X, ρ, S) .

Finally, we assume that there exists a sequence $\{U_{i,j} : i, j \in \mathbb{N}\}$ of uniformly lower semicomputable open sets in the computable metric space (X, ρ, S) satisfying that $f_j^{-1}(B'_i) \cap C = U_{i,j} \cap C$ for each pair of $i, j \in \mathbb{N}$ and establish that $\{f_i\}_{i \in \mathbb{N}}$ is a sequence of uniformly computable functions on C. Now we fix an oracle φ_x of a point $x \in C$ and a pair of $i, n \in \mathbb{N}$. By Definition 1.3, it suffices to compute an integer m satisfying that $\rho'(s'_m, f_i(x)) < 2^{-n}$, i.e., $x \in f_i^{-1}(B_{\rho'}(s'_m, 2^{-n}))$.

Indeed, by hypotheses, we can compute a sequence $\{U_m\}_{m\in\mathbb{N}}$ of lower semi-computable open sets satisfying that $f_i^{-1}(B_{\rho'}(s'_m, 2^{-n})) \cap C = U_m \cap C$ for each $m \in \mathbb{N}$. Note that $x \in C$. Then $x \in f_i^{-1}(B_{\rho'}(s'_m, 2^{-n}))$ if and only if $x \in U_m$, i.e., $B_{\rho}(s_{\varphi_x(t)}, 2^{-t}) \subseteq U_m$ for some $t \in \mathbb{N}$. By the uniform lower semi-computable openness of the sequence $\{U_m\}_{m\in\mathbb{N}}$, it is not hard to construct an algorithm which, on input $m \in \mathbb{N}$, halts if and only if $x \in U_m$. Note that $S = \{s_m\}_{m\in\mathbb{N}}$ is dense in X. Then there exists an integer m satisfying that $x \in U_m$. Therefore, we can find an integer $m \in \mathbb{N}$ such that $x \in U_m$ for each $x \in X$. Therefore, we establish that $\{f_i\}_{i\in\mathbb{N}}$ is a sequence of uniformly computable functions on C.

Lemma 1.5. There exists an algorithm that satisfies the following property:

For each $m \in \mathbb{N}$, each $n \in \mathbb{N}$, and each complex polynomial p of degree m, this algorithm outputs a sequence $\{q_i\}_{i=1}^m$ of integers satisfying that if x_1, x_2, \ldots, x_m are all the zeros of the map p (counting with multiplicity), then there exists a permutation σ on $\{1, 2, \ldots, m\}$ such that

QIANDU HE

 $\sigma(u_{q_{\sigma(i)}}, x_i) < 2^{-n}$ for each integer $1 \leq i \leq m$, where $\{u_j\}_{j \in \mathbb{N}}$ is the effective enumeration of the set $\mathbb{Q}(\widehat{\mathbb{C}})$, after we input the following data in this algorithm:

- (i) an algorithm \mathcal{A}_p computing all the coefficients of the polynomial p,
- (ii) the integer n.

Proof. Let $\{s_i\}_{i\in\mathbb{N}}$ be an effective enumeration of the set $\{a + b\mathbf{i} : a, b \in \mathbb{Q}\}$. Now we design an algorithm $M(\cdot, \cdot)$ satisfying the following property:

For each polynomial Q, there exists a zero z_0 of Q satisfying that for each $m \in \mathbb{N}$, $M(\mathcal{A}_Q, m)$ outputs a point $l_m \in \mathbb{Q}(\widehat{\mathbb{C}})$ with $\sigma(l_m, z_0) < 2^{-m}$ after we input an algorithm \mathcal{A}_Q computing all the coefficients of the polynomial Q and the integer m.

First, we use the algorithm \mathcal{A}_Q to compute the sequence $\{Q'(s_i)\}$ and select a subsequence $\{\tilde{s}_i\}_{i\in\mathbb{N}}$ of $\{s_i\}_{i\in\mathbb{N}}$ of all the ideal points \tilde{s}_i with $Q'(\tilde{s}_i) \neq 0$. Then we define two sequences $\{\gamma(Q,i)\}_{i\in\mathbb{N}}$ and $\{\beta(Q,i)\}_{i\in\mathbb{N}}$ by

(1.1)
$$\gamma(Q,i) \coloneqq \sup_{k \ge 2} \left| \frac{Q^{(k)}(\tilde{s}_i)}{k!Q'(\tilde{s}_i)} \right|^{\frac{1}{k-1}} \quad \text{and} \quad \beta(Q,i) \coloneqq \left| \frac{Q(\tilde{s}_i)}{Q'(\tilde{s}_i)} \right|.$$

Since there exist finitely many roots for the rational map Q' and $\{s_i\}_{i\in\mathbb{N}}$ is dense in \mathbb{C} , $\{\tilde{s}_i\}_{i\in\mathbb{N}}$ is also dense in \mathbb{C} . Combining with the fact that $\beta(Q,\xi) = 0$ for each root $\xi \in \mathbb{C}$ of Q, we can enumerate the sequence $\{\tilde{s}_i\}_{i\in\mathbb{N}}$ and find $i_0 \in \mathbb{N}$ with $\alpha(Q, i_0) := \beta(Q, i_0)\gamma(Q, i_0) < \alpha_0$ (here we can select $\alpha_0 := 0.03$, see Remark 6 of [BCSS98, Section 8.2]). Next, compute an integer k_m with

(1.2)
$$k_m > \log_2(m + 4 + \log_2(\beta(Q, i_0))).$$

Hence, by Theorem 2 of [BCSS98, Section 8.2], there exists a zero $z_0 \in \mathbb{C}$ of Q satisfying that

$$|N_Q^t(\tilde{s}_{i_0}) - z_0| \leq \frac{|\tilde{s}_{i_0} - z_0|}{2^{2^t - 1}} \leq \frac{2\beta(Q, i_0)}{2^{2^t - 1}}$$
 for each $t \in \mathbb{N}$.

Here $N_Q(z) \coloneqq z - \frac{Q(z)}{Q'(z)}$ for each $z \in \mathbb{C}$. Combining with (1.2), this implies that

(1.3)
$$\left| N_Q^{k_m}(\tilde{s}_{i_0}) - z_0 \right| \leqslant \frac{2\beta(Q, i_0)}{2^{2^{k_m} - 1}} < \frac{2\beta(Q, i_0)}{2^{m+3 + \log_2(\beta(Q, i_0))}} = \frac{1}{2^{m+2}}$$

Finally, we use the algorithm \mathcal{A}_Q to compute and output a point $l_m \in \mathbb{Q}(\widehat{\mathbb{C}})$ with $|l_m - N_Q^{k_m}(\tilde{s}_{i_0})| < 2^{-m-2}$. It follows immediately from the definition of the chordal metric σ on $\widehat{\mathbb{C}}$ (see Section ??) that $\sigma(z, w) \leq 2|z - w|$ for each pair of $z, w \in \mathbb{C}$. Hence, by (1.3),

$$\sigma(l_m, z_0) \leq 2|l_m - z_0| \leq 2(|l_m - N_Q^{k_m}(\tilde{s}_{i_0})| + |N_Q^{k_m}(\tilde{s}_{i_0}) - z_0|) < 2^{-m}$$

So far we have designed the algorithm $M(\cdot, \cdot)$.

Next, we come back to the proof of the original statement. Fix an integer n and a complex polynomial p of degree n. First, we can use the algorithm $M(\mathcal{A}_p, \cdot)$ to compute a zero of the polynomial p, say z_0 . Then we consider the map $\overline{p}(z) \coloneqq \frac{p(z)}{z-z_0}$. Since $p(z_0) = 0$, \overline{p} is a polynomial of degree n-1. Now we claim that we can compute all the coefficients of the polynomial \overline{p} from the point z_0 and all the coefficients of the polynomial p. Indeed, if $p(z) = \sum_{i=0}^{n} a_i z^i$ and $\overline{p}(z) = \sum_{i=0}^{n-1} b_i z^i$, then it is not hard to see that $b_i = a_{i+1} + z_0 b_{i+1}$ for each integer $0 \leq i \leq n-1$, where b_n is set to be 0. Hence, we obtain an algorithm $\mathcal{A}_{\overline{p}}$ computing all the coefficients of \overline{p} . Then we can use the algorithm $M(\mathcal{A}_{\overline{p}}, \cdot)$ to compute a zero of the polynomial \overline{p} , i.e., a new zero of the polynomial p. Therefore, we can compute all the zeros of p (counting with multiplicity) recursively.

REFERENCES

References

- [BD23] Bianchi, F. and Dinh, T.-C., Equilibrium states of endomorphisms of \mathbb{P}^k I: existence and properties, J. Math. Pures Appl. 172 (2023), 164–201.
- [BD24] Bianchi, F. and Dinh, T.-C., Equilibrium States of Endomorphisms of \mathbb{P}^k : Spectral Stability and Limit Theorems, *Geom. Funct. Anal.* 34 (2024), 1006–1051.
- [BBRY11] Binder, I., Braverman, M., Rojas, C., and Yampolsky, M., Computability of Brolin– Lyubich measure, *Comm. Math. Phys.* 308 (2011), 743–771.
- [BGRY22] Binder, I., Glucksam, A., Rojas, C., and Yampolsky, M., Computability in Harmonic Analysis, *Found. Comput. Math.* 22 (2022), 849–873.
- [BHLZ24] Binder, I., He, Q., Li, Z., and Zhang, Y., On computability of equilibrium states, 2024, arXiv: 2311.09374 [math.DS].
- [BRY14] Binder, I., Rojas, C., and Yampolsky, M., Computable caratheodory theory, *Adv. Math.* 265 (2014), 280–312.
- [BCSS98] Blum, L., Cucker, F., Shub, M., and Smale, S., *Complexity and Real Computation*, 1998.
- [BM10] Bonk, M. and Meyer, D., *Expanding Thurston Maps*, 2010, arXiv: 1009.3647 [math.DS].
- [BM17] Bonk, M. and Meyer, D., *Expanding Thurston Maps*, vol. 225, Amer. Math. Soc., Providence, RI, 2017.
- [BBY12] Bonnot, S., Braverman, M., and Yampolsky, M., Thurston equivalence to a rational map is decidable, *Mosc. Math. J.* 12 (2012), 747–763, 884.
- [Bow75] Bowen, R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math. 470 (1975), 1–17.
- [BY06] Braverman, M. and Yampolsky, M., Non-computable Julia sets, J. Amer. Math. Soc. 19 (2006), 551–578.
- [Bra23] Braverman, M., Communication and information complexity, *Proc. Internat. Congr. Math. (2022)*, Vol. I, EMS Press, Berlin, 2023, 284–320.
- [BY09] Braverman, M. and Yampolsky, M., *Computability of Julia sets*, vol. 23, Springer, 2009.
- [Bro65] Brolin, H., Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144.
- [BDWY22] Burr, M., Das, S., Wolf, C., and Yang, Y., Computability of topological pressure on compact shift spaces beyond finite type, *Nonlinearity* 35 (2022), 4250–4282.
- [BS03] Buzzi, J. and Sarig, O., Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, *Ergodic Theory Dynam. Sys*tems 23 (2003), 1383–1400.
- [Can94] Cannon, J. W., The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), 155–234.
- [Dob68] Dobruschin, P., The description of a random field by means of conditional probabilities and conditions of its regularity, *Theory Probab. Appl.* 13 (1968), 197–224.
- [DY21] Dudko, A. and Yampolsky, M., On computational complexity of Cremer Julia sets, Fund. Math. 252 (2021), 343–353.
- [Fol13] Folland, G., *Real Analysis: Modern Techniques and Their Applications*, Wiley, 2013.
- [GHR11] Galatolo, S., Hoyrup, M., and Rojas, C., Dynamics and abstract computability: computing invariant measures, *Dyn. Syst.* 29 (2011).
- [GHRS20] Gangloff, S., Herrera, A., Rojas, C., and Sablik, M., Computability of topological entropy: From general systems to transformations on Cantor sets and the interval, *Discrete Contin. Dyn. Syst.* 40 (2020).

6	REFERENCES
[HP09]	Haïssinsky, P. and Pilgrim, K. M., Coarse expanding conformal dynamics, <i>Astérisque</i> (2009).
[HT03]	Hawkins, J. and Taylor, M., Maximal entropy measure for rational maps and a random iteration algorithm for Julia sets, <i>Int. J. Bifurc. Chaos</i> 13 (2003), 1442–1447.
[Hei01]	Heinonen, J., Lectures on Analysis on Metric Spaces, Springer, New York, 2001.
[HM10]	Hochman, M. and Meyerovitch, T., A characterization of the entropies of multidi- mensional shifts of finite type, Ann. of Math. (2) 171 (2010), 2011–2038.
[HR09]	Hoyrup, M. and Rojas, C., Computability of probability measures and Martin-Löf randomness over metric spaces, <i>Inform. and Comput.</i> 207 (2009), 830–847.
[HS94]	Hubbard, J. H. and Schleicher, D., "The spider algorithm", <i>Complex dynamical systems (Cincinnati, OH, 1994)</i> , vol. 49, Amer. Math. Soc., Providence, RI, 1994, pp. 155–180.
[KH95]	Katok, A. and Hasselblatt, B., <i>Introduction to the Modern Theory of Dynamical Systems</i> , vol. 54, Cambridge Univ. Press, Cambridge, 1995.
[Li15]	Li, Z., Weak expansion properties and large deviation principles for expanding Thurston maps, <i>Adv. Math.</i> 285 (2015), 515–567.
[Li17]	Li, Z., Ergodic Theory of Expanding Thurston Maps, Atlantis Series in Dynamical Systems, Springer, 2017.
[Li18]	Li, Z., Equilibrium states for expanding Thurston maps, <i>Comm. Math. Phys.</i> 357 (2018), 811–872.
[LS24]	Li, Z. and Shi, X., Entropy density and large deviation principles without upper semi-continuity of entropy, 2024, arXiv: 2406.01712 [math.DS].
[Lyu82]	Lyubich, M. Yu., The maximum-entropy measure of a rational endomorphism of the Riemann sphere, <i>Funct. Anal. Appl.</i> 16 (1982), 309–311.
[Mun00]	Munkres, J., <i>Topology</i> , Featured Titles for Topology, Prentice Hall, Incorporated, 2000.
[Oli03]	Oliveira, K., Equilibrium states for non-uniformly expanding maps, <i>Ergodic Theory Dynam. Systems</i> 23 (2003), 1891–1905.
[Prz90]	Przytycki, F., On the Perron–Frobenius–Ruelle operator for rational maps on the Riemann sphere and for Hölder continuous functions, <i>Bol. Soc. Brasil. Mat.</i> 20 (1990), 95–125.
[PU10]	Przytycki, F. and Urbański, M., <i>Conformal Fractals: Ergodic Theory Methods</i> , vol. 371, Cambridge Univ. Press, Cambridge, 2010.
[RSY20]	Rafi, K., Selinger, N., and Yampolsky, M., Centralizers in mapping class groups and decidability of Thurston equivalence, <i>Arnold Math. J.</i> 6 (2020), 271–290.
[RY21]	Rojas, C. and Yampolsky, M., Real quadratic Julia sets can have arbitrarily high complexity, <i>Found. Comput. Math.</i> 21 (2021), 59–69.
[Rue89]	Ruelle, D., The thermodynamic formalism for expanding maps, <i>Comm. Math. Phys.</i> 125 (1989), 239–262.
[SY15]	Selinger, N. and Yampolsky, M., Constructive geometrization of Thurston maps and decidability of Thurston equivalence, <i>Arnold Math. J.</i> 1 (2015), 361–402.
[Sin72] [Spa07]	Sinai, Y. G., Gibbs measures in ergodic theory, <i>Russian Math. Surveys</i> 27 (1972), 21. Spandl, C., Computing the topological entropy of shifts, <i>Math. Log. Q.</i> 53 (2007), 493–510.
[Vil09] [Wal75]	Villani, C., <i>Optimal transport: old and new</i> , vol. 338, Springer-Verlag, Berlin, 2009. Walters, P., A variational principle for the pressure of continuous transformations, <i>Amer. J. Math.</i> 97 (1975), 937–971.

REFERENCES

[Wal82]	Walters, P., An Introduction to Ergodic Theory, vol. 79, Springer, New York-Berlin, 1982.
[Wal92]	Walters, P., Differentiability properties of the pressure of a continuous transforma-
	tion on a compact metric space, J. Lond. Math. Soc. (2) 46 (1992), 471–481.
[Wei00]	Weihrauch, K., Computable analysis: an introduction, Springer-Verlag, Berlin, Hei-
	delberg, 2000.
[Yam21]	Yampolsky, M., Towards understanding the theoretical challenges of numerical mod-
	eling of dynamical systems, New Zealand J. Math. 52 (2021), 453–467.
[Yur03]	Yuri, M., Thermodynamic formalism for countable to one Markov systems, Trans.
	Amer. Math. Soc. 355 (2003), 2949–2971.
[Zie06]	Ziegler, M., Effectively open real functions, J. Complexity 22 (2006), 827–849.
[Zin96]	Zinsmeister, M., Formalisme thermodynamique et systèmes dynamiques holomor-
	phes, vol. 4, Société Mathématique de France, 1996.

QIANDU HE, SCHOOL OF MATHEMATICAL SCIENCES, PEKING UNIVERSITY, BEIJING 100871, CHINA *Email address*: heqiandu@stu.pku.edu.cn