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1. Preliminaries draft

Definition 1.1. A computable metric space is a triple (X, ρ, S), where
(i) (X, ρ) is a separable metric space;
(ii) S = {sn : n ∈ N} is a countable dense subset of X; and
(iii) there exists an algorithm which, on input i, j, m ∈ N, outputs yi,j,m ∈ Q satisfying∣∣yi,j,m − ρ

(
si, sj

)∣∣ < 2−m.
The points in S are said to be ideal. Due to the existence of computable bijection between N3

and N, there exists an effective enumeration {Bl}l∈N of the set {B(si, j/k) : i, j, k ∈ N} of balls
with rational radii centered at points in S. Specifically, there exists an algorithm that, given an
input l ∈ N, outputs the lower index of the ideal center and the rational radius of the ball Bl.
These balls are called the ideal balls in (X, ρ, S). We fix such an effective enumeration of ideal
balls and call it the effective enumeration of ideal balls in (X, ρ, S).

Definition 1.2. In a computable metric space (X, ρ, S), an open set U ⊆ X is called lower semi-
computable if there is a computable function f : N → N such that U =

⋃
n∈NBf(n). Moreover, a

sequence {Ui}i∈N of lower semi-computable open sets is called a sequence of uniformly lower semi-
computable open sets if there is a computable function f : N2 → N such that Ui =

⋃
n∈NBf(i,n)

for each i ∈ N.

Definition 1.3. Let (X, ρ, S) and (X ′, ρ′, S ′) be computable metric spaces with S = {si}i∈N
and S ′ =

{
s′i
}
i∈N, and let C be a subset of X. A function f : X → X ′ is said to be computable

on C if there exists an algorithm that for each x ∈ X and each n ∈ N, on input n ∈ N and an
oracle φ for x ∈ C, outputs m ∈ N satisfying ρ′

(
s′m, f(x)

)
< 2−n. Moreover, a sequence {fi}i∈N

of functions fi : X → X ′ is called a sequence of uniformly computable functions on C if there
exists an algorithm that for each x ∈ X, each i ∈ N, and each n ∈ N, on input i, n ∈ N, and an
oracle φ for x ∈ C, outputs m ∈ N satisfying ρ′

(
s′m, fi(x)

)
< 2−n. As a convention, we say that

f is computable if f is computable on X.

Proposition 1.4. Let (X, ρ, S) and (X ′, ρ′, S ′) be two computable metric spaces, C be a subset of
X, and

{
B′

i

}
i∈N be the effective enumeration of ideal balls in (X ′, ρ′, S ′). Assume that {fi}i∈N is a

sequence of functions fi : X → X ′. Then {fi}i∈N is a sequence of uniformly computable functions
on C if and only if there exists a sequence

{
Ui,j

}
i,j∈N of uniformly lower semi-computable open
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sets in the computable metric space (X, ρ, S) satisfying that f−1
j

(
B′

i

)
∩C = Ui,j ∩C for each pair

of i, j ∈ N.

Proof. Write S = {si}i∈N and S ′ =
{
s′i
}
i∈N. Now we assume that {fi}i∈N is a sequence of

uniformly computable functions on C and show that there exists a sequence
{
Ui,j

}
i,j∈N of uni-

formly lower semi-computable open sets in the computable metric space (X, ρ, S) satisfying
f−1
j (B′

i) ∩ C = Ui,j ∩ C for each pair of i, j ∈ N. For each q ∈ N, we say that a sequence {pi}qi=1

of integers is admissible in the computable metric space (X, ρ, S) if ρ
(
spi+1 , spi

)
< 2−i−1 for each

i ∈ N ∩ [1, q − 1]. By Definition 1.1 (iii), we can check whether a given sequence of finitely many
integers is admissible. Hence, by enumerating all the sequences of finitely many integers, it is
not difficult to obtain an effective enumeration {Pi}i∈N of all possible admissible sequences in
(X, ρ, S). Moreover, for each admissible sequence P = {pi}qi=1, we can define a corresponding
function φP : N → N as follows:

φP (i) :=

{
pi if 1 ⩽ i ⩽ q;

pq if i ⩾ q + 1
for each i ∈ N

is an oracle for the point spq ∈ X.
Since {fi}i∈N is a sequence of uniformly computable functions on C, there exists an algorithm

M(·, ·, · ) that satisfies that for each x ∈ C, each n ∈ N, each i ∈ N, and each oracle φ for
x, M(i, n, φ) outputs m ∈ N satisfying that ρ′(s′m, fi(x)) < 2−n. We enumerate N × N by
{(au, nu)}u∈N effectively. Now we design an algorithm M ′(·, · ) which, for each pair of i, j ∈ N,
on input i, j ∈ N, outputs a sequence {ci,j,k}k∈N of integers and a sequence {ri,j,k}k∈N of rational
numbers satisfying that f−1

j (B′
i) ∩ C =

⋃
k∈N

(
Bρ

(
sci,j,k , ri,j,k

)
∩ C

)
for each i, j ∈ N as follows.

Begin
(i) Read in the integers i and j.
(ii) Set u and k both to be 1, and flagi = 0 for each i ∈ N.
(iii) While u ⩾ 1 do

(1) Run the algorithm M
(
j, nu, φPau

)
.

(2) Set v to be 1.
(3) While 1 ⩽ v ⩽ u do

(A) If
(a) flagv equals to 0,
(b) the algorithm M

(
j, nv, φPav

)
halts and outputs mv ∈ N satisfying that

Bρ′
(
s′mv

, 2−nv
)
⊆ B′

i

(the algorithm M
(
j, nv, φPav

)
terminates after finitely many steps, and

hence the oracle φPav
is only quired up to some finite precision 2−wv),

then
(a′) the algorithm M ′(i, j) outputs ci,j,k := φPav

(wv) and ri,j,k := 2−wv ,
(b′) set flagv to be 1 and k to be k + 1.

(B) Set v to be v + 1.
(4) Set u to be u+ 1.

End
Now we fix an pair of i, j ∈ N, and verify that f−1

j (B′
i) ∩ C =

⋃
k∈N

(
Bρ

(
sci,j,k , ri,j,k

)
∩ C

)
.
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First, we fix an integer k and show that Bρ

(
sci,j,k , ri,j,k

)
∩ C ⊆ f−1

j (B′
i). By Step (iii) (3) (A)

of the algorithm M ′(i, j), we obtain that ci,j,k = φPav
(wv) and ri,j,k = 2−wv for some v ∈ N

with Bρ′
(
s′mv

, 2−nv
)
⊆ B′

i. Here mv is the output of the algorithm M
(
j, nv, φPav

)
. Note that

S = {si}i∈N is dense in X. It is not hard to see that, for each x ∈ Bρ

(
sci,j,k , ri,j,k

)
∩C, there is a

valid oracle φ̃x that agrees with φPav
up to precision 2−wv . Thus for each x ∈ Bρ

(
sci,j,k , ri,j,k

)
∩C,

M(j, nv, φ̃x) outputs the same answer mv and hence, we must have fj(x) ∈ Bρ′
(
s′mv

, 2−nv
)
⊆ B′

i.
Then we have fj

(
Bρ

(
sci,j,k , ri,j,k

)
∩ C

)
⊆ B′

i. Therefore, we obtain that
⋃

k∈N
(
Bρ

(
sci,j,k , ri,j,k

)
∩

C
)
⊆ f−1

j (B′
i) ∩ C.

Next, we establish that
⋃

k∈N
(
Bρ

(
sci,j,k , ri,j,k

)
∩ C

)
⊇ f−1

j (B′
i) ∩ C. Now we fix an point x ∈

f−1
j (B′

i) ∩ C, and show that x ∈ Bρ

(
sci,j,k , ri,j,k

)
for some k ∈ N. Indeed, since fj(x) ∈ B′

i, there
exists n(x) ∈ N satisfying that Bρ′

(
fj(x), 2

−n(x)+1
)
⊆ B′

i. Note that S is dense in X. It is not
hard to see that, for x ∈ C, there is a valid oracle φx that satisfies that {φx(v)}

q
v=1 is an admissible

sequence for each q ∈ N. Note that x ∈ C. Then the algorithm M(j, n(x), φx) will halt eventually.
Assume that the output of the algorithm M(j, n(x), φx) is m(x). Then ρ′

(
s′m(x), fj(x)

)
< 2−n(x).

Hence, Bρ′
(
s′m(x), 2

−n(x)
)
⊆ Bρ′

(
fj(x), 2

−n(x)+1
)
⊆ B′

i. Assume that the oracle φx is only quired
up to the precision 2−w(x) by the algorithm M(j, n(x), φx). Denote the sequence {φx(v)}

w(x)
v=1 by

Q(x). Then Q(x) is an admissible sequence and the oracle φQ(x) agrees with φx up to precision
2−w(x). Thus M

(
j, n(x), φQ(x)

)
outputs the same answer m(x) ∈ N as M(j, n(x), φx). Since

Q(x) is an admissible sequence, we will run the algorithm M
(
j, n(x), φQ(x)

)
in Step (iii) (1)

of the algorithm M ′(i, j). Since Bρ′
(
s′m(x), 2

−n(x)
)
⊆ B′

i, in Step (iii) (3) (A) of the algorithm
M ′(i, j), M ′(i, j) will output ci,j,k = φQ(x)(w(x)) = φx(w(x)) and ri,j,k = 2−w(x) for some k ∈ N.
Note that φx is an oracle for x. Then we have x ∈ Bρ

(
sφx(w(x)), 2

−w(x)
)
= Bρ

(
sci,j,k , ri,j,k

)
.

Hence, f−1
j (B′

i) ∩ C =
(⋃

k∈NBρ

(
sci,j,k , ri,j,k

))
∩ C for each pair of i, j ∈ N. Note that by

the existence of the algorithm M ′(·, · ), we have
{
Bρ

(
sci,j,k , ri,j,k

)
: i, j, k ∈ N

}
is a sequence

of uniformly lower semi-computable open sets in the computable metric space (X, ρ, S). From
Definition 1.2, by constructing a computable bijection between N3 and N2, it is not hard to derive
that

{⋃
k∈NBρ

(
sci,j,k , ri,j,k

)
: i, j ∈ N

}
is a sequence of uniformly lower semi-computable open

sets in the computable metric space (X, ρ, S).
Finally, we assume that there exists a sequence {Ui,j : i, j ∈ N} of uniformly lower semi-

computable open sets in the computable metric space (X, ρ, S) satisfying that f−1
j (B′

i) ∩ C =

Ui,j ∩C for each pair of i, j ∈ N and establish that {fi}i∈N is a sequence of uniformly computable
functions on C. Now we fix an oracle φx of a point x ∈ C and a pair of i, n ∈ N. By Definition 1.3,
it suffices to compute an integer m satisfying that ρ′(s′m, fi(x)) < 2−n, i.e., x ∈ f−1

i (Bρ′(s
′
m, 2−n)).

Indeed, by hypotheses, we can compute a sequence {Um}m∈N of lower semi-computable open
sets satisfying that f−1

i (Bρ′(s
′
m, 2−n)) ∩ C = Um ∩ C for each m ∈ N. Note that x ∈ C. Then

x ∈ f−1
i (Bρ′(s

′
m, 2−n)) if and only if x ∈ Um, i.e., Bρ

(
sφx(t), 2

−t
)
⊆ Um for some t ∈ N. By the

uniform lower semi-computable openness of the sequence {Um}m∈N, it is not hard to construct an
algorithm which, on input m ∈ N, halts if and only if x ∈ Um. Note that S = {sm}m∈N is dense
in X. Then there exists an integer m satisfying that x ∈ Um. Therefore, we can find an integer
m ∈ N such that x ∈ Um for each x ∈ X. Therefore, we establish that {fi}i∈N is a sequence of
uniformly computable functions on C. □

Lemma 1.5. There exists an algorithm that satisfies the following property:
For each m ∈ N, each n ∈ N, and each complex polynomial p of degree m, this algorithm

outputs a sequence {qi}mi=1 of integers satisfying that if x1, x2, . . . , xm are all the zeros of the
map p (counting with multiplicity), then there exists a permutation σ on {1, 2, . . . , m} such that
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σ
(
uqσ(i)

, xi
)
< 2−n for each integer 1 ⩽ i ⩽ m, where

{
uj
}
j∈N is the effective enumeration of the

set Q
(
Ĉ
)
, after we input the following data in this algorithm:

(i) an algorithm Ap computing all the coefficients of the polynomial p,
(ii) the integer n.

Proof. Let {si}i∈N be an effective enumeration of the set {a + bi : a, b ∈ Q}. Now we design an
algorithm M( · , · ) satisfying the following property:

For each polynomial Q, there exists a zero z0 of Q satisfying that for each m ∈ N, M
(
AQ,m

)
outputs a point lm ∈ Q

(
Ĉ
)

with σ(lm, z0) < 2−m after we input an algorithm AQ computing all
the coefficients of the polynomial Q and the integer m.

First, we use the algorithm AQ to compute the sequence {Q′(si)} and select a subsequence
{s̃i}i∈N of {si}i∈N of all the ideal points s̃i with Q′(s̃i) ̸= 0. Then we define two sequences
{γ(Q, i)}i∈N and {β(Q, i)}i∈N by

(1.1) γ(Q, i) := sup
k⩾2

∣∣∣∣Q(k)(s̃i)

k!Q′(s̃i)

∣∣∣∣ 1
k−1

and β(Q, i) :=

∣∣∣∣ Q(s̃i)

Q′(s̃i)

∣∣∣∣.
Since there exist finitely many roots for the rational map Q′ and {si}i∈N is dense in C, {s̃i}i∈N
is also dense in C. Combining with the fact that β(Q, ξ) = 0 for each root ξ ∈ C of Q, we can
enumerate the sequence {s̃i}i∈N and find i0 ∈ N with α(Q, i0) := β(Q, i0)γ(Q, i0) < α0 (here we
can select α0 := 0.03, see Remark 6 of [BCSS98, Section 8.2]). Next, compute an integer km with
(1.2) km > log2(m+ 4 + log2(β(Q, i0))).

Hence, by Theorem 2 of [BCSS98, Section 8.2], there exists a zero z0 ∈ C of Q satisfying that∣∣N t
Q(s̃i0)− z0

∣∣ ⩽ |s̃i0 − z0|
22t−1

⩽ 2β(Q, i0)

22t−1
for each t ∈ N.

Here NQ(z) := z − Q(z)
Q′(z) for each z ∈ C. Combining with (1.2), this implies that

(1.3)
∣∣Nkm

Q (s̃i0)− z0
∣∣ ⩽ 2β(Q, i0)

22km−1
<

2β(Q, i0)

2m+3+log2(β(Q,i0))
=

1

2m+2
.

Finally, we use the algorithm AQ to compute and output a point lm ∈ Q
(
Ĉ
)

with
∣∣lm−Nkm

Q (s̃i0)
∣∣ <

2−m−2. It follows immediately from the definition of the chordal metric σ on Ĉ (see Section ??)
that σ(z, w) ⩽ 2|z − w| for each pair of z, w ∈ C. Hence, by (1.3),

σ(lm, z0) ⩽ 2|lm − z0| ⩽ 2
(∣∣lm −Nkm

Q (s̃i0)
∣∣+ ∣∣Nkm

Q (s̃i0)− z0
∣∣) < 2−m.

So far we have designed the algorithm M(·, ·).
Next, we come back to the proof of the original statement. Fix an integer n and a complex

polynomial p of degree n. First, we can use the algorithm M
(
Ap, ·

)
to compute a zero of the

polynomial p, say z0. Then we consider the map p(z) := p(z)
z−z0

. Since p(z0) = 0, p is a polynomial
of degree n − 1. Now we claim that we can compute all the coefficients of the polynomial p
from the point z0 and all the coefficients of the polynomial p. Indeed, if p(z) =

∑n
i=0 aiz

i and
p(z) =

∑n−1
i=0 biz

i, then it is not hard to see that bi = ai+1+ z0bi+1 for each integer 0 ⩽ i ⩽ n− 1,
where bn is set to be 0. Hence, we obtain an algorithm Ap computing all the coefficients of p.
Then we can use the algorithm M

(
Ap, ·

)
to compute a zero of the polynomial p, i.e., a new zero

of the polynomial p. Therefore, we can compute all the zeros of p (counting with multiplicity)
recursively. □
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